Cookie Control

This site uses cookies to store information on your computer.

Some cookies on this site are essential, and the site won't work as expected without them. These cookies are set when you submit a form, login or interact with the site by doing something that goes beyond clicking on simple links.

We also use some non-essential cookies to anonymously track visitors or enhance your experience of the site. If you're not happy with this, we won't set these cookies but some nice features of the site may be unavailable.

By using our site you accept the terms of our Privacy Policy.

(One cookie will be set to store your preference)
(Ticking this sets a cookie to hide this popup if you then hit close. This will not store any personal information)

In First, Alaska’s Arctic Waters Appear Poised for Dangerous Algal Blooms

"Climate change is bringing potentially deadly dinoflagellate blooms to the Far North, posing a new risk to food security."

"Researchers in Alaska’s Chukchi Sea region have found massive numbers of a tiny dinoflagellate called Alexandrium catenella lurking in a largely inert state on the seabed. The microorganisms, which have never before been mapped in such large numbers in Alaska’s Arctic, produce algal blooms known as red tides that carry a toxin that is potentially fatal to people and marine wildlife. The discovery is concerning for those living in an area where human diets and economies are wed to the ocean.

According to Evie Fachon, a biologist at the Woods Hole Oceanographic Institution in Massachusetts, the dinoflagellates likely drifted north as inert cysts from warmer waters, and have been lying on the seafloor for some unknown amount of time. Fachon says that, like a seed, these cysts can remain dormant but alive for long periods in inhospitable environments, only blooming under the right conditions.

Although A. catenella cysts have been found this far north in the past, researchers believe cold water and widespread sea ice, which blocks sunlight from entering the water, have historically prevented them from blooming. But now, that appears to be changing."

Tim Lydon reports for Hakai magazine December 2, 2021.

Source: Hakai, 12/03/2021