Cookie Control

This site uses cookies to store information on your computer.

Some cookies on this site are essential, and the site won't work as expected without them. These cookies are set when you submit a form, login or interact with the site by doing something that goes beyond clicking on simple links.

We also use some non-essential cookies to anonymously track visitors or enhance your experience of the site. If you're not happy with this, we won't set these cookies but some nice features of the site may be unavailable.

By using our site you accept the terms of our Privacy Policy.

(One cookie will be set to store your preference)
(Ticking this sets a cookie to hide this popup if you then hit close. This will not store any personal information)

"Soil And Its Promise As A Climate Solution: A Primer"

"We know that soil feeds plants, but do we know how it got there in the first place? Soil forms via the interaction of five factors: parent material, climate, living beings, a land’s topography, and a “cooking” time that occurs on a geologic scale. Variations in these 5 factors make the world’s soils unique and extremely diverse.

Soil acts as a carbon sink in the global carbon cycle because it locks away decomposed organic matter. But deforestation, various agricultural practices, and a changing climate are releasing it back into the atmosphere and oceans as carbon dioxide, resulting in an imbalance in global carbon budgets.

Tropical soils and permafrost hold the most soil carbon out of other biomes, making them conservation and research priorities in soil-centered climate solutions.

Reforestation of previously forested lands is a viable solution to return carbon belowground, but it is not a fix-all. Changing industrial agricultural practices and giving high-carbon storage areas conservation status are key steps toward harnessing the soil’s carbon storage power."

Mareli Sanchez-Julia reports for Mongabay August 10, 2021.

 

Source: Mongabay, 08/11/2021